Rod and cone visual cycle consequences of a null mutation in the 11-cis-retinol dehydrogenase gene in man.

نویسندگان

  • Artur V Cideciyan
  • Françoise Haeseleer
  • Robert N Fariss
  • Tomas S Aleman
  • Geeng-Fu Jang
  • Christophe L M J Verlinde
  • Michael F Marmor
  • Samuel G Jacobson
  • Krzysztof Palczewski
چکیده

Vertebrate vision starts with photoisomerization of the 11-cis-retinal chromophore to all-trans-retinal. Biosynthesis of 11-cis-retinal is required to maintain vision. A key enzyme catalyzing the oxidation of 11-cis-retinol is 11-cis-retinol dehydrogenase (11-cis-RDH), which is encoded by the RDH5 gene. 11-cis-RDH is expressed in the RPE and not in the neural retina. The consequences of a lack of 11-cis-RDH were studied in a family with fundus albipunctatus. We identified the causative novel RDH5 mutation, Arg157Trp, that replaces an amino acid residue conserved among short-chain alcohol dehydrogenases. Three-dimensional structure modeling and in vitro experiments suggested that this mutation destabilizes proper folding and inactivates the enzyme. Studies using RPE membranes indicated the existence of an alternative oxidizing system for the production of 11-cis-retinal. In vivo visual consequences of this null mutation showed complex kinetics of dark adaptation. Rod and cone resensitization was extremely delayed following full bleaches; unexpectedly, the rate of cone recovery was slower than rods. Cones showed a biphasic recovery with an initial rapid component and an elevated final threshold. Other unanticipated results included normal rod recovery following 0.5% bleach and abnormal recovery following bleaches in the 2-12% range. These intermediate bleaches showed rapid partial recovery of rods with transitory plateaux. Pathways in addition to 11-cis-RDH likely provide 11-cis-retinal for rods and cones and can maintain normal kinetics of visual recovery but only under certain constraints and less efficiently for cone than rod function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement in rod and cone function in mouse model of Fundus albipunctatus after pharmacologic treatment with 9-cis-retinal.

PURPOSE To assess changes in rod and cone visual functions in a mouse model of Fundus albipunctatus with disrupted 11-cis-retinol dehydrogenase (RDH) genes after pharmacologic treatment with an artificial retinal chromophore. METHODS Retinoid levels and photoreceptor functions of Rdh5-/-Rdh11-/- mice at a variety of light intensities were analyzed with normal-phase HPLC and ERG techniques. Pr...

متن کامل

Isomerization and Oxidation of Vitamin A in Cone-Dominant Retinas A Novel Pathway for Visual-Pigment Regeneration in Daylight

The first step toward light perception is 11-cis to all-trans photoisomerization of the retinaldehyde chromophore in a rod or cone opsin-pigment molecule. Light sensitivity of the opsin pigment is restored through a multistep pathway called the visual cycle, which effects all-trans to 11-cis re-isomerization of the retinoid chromophore. The maximum throughput of the known visual cycle, however,...

متن کامل

The visual cycle retinol dehydrogenase: possible involvement in the 9-cis retinoic acid biosynthetic pathway.

The 11-cis-retinol dehydrogenase (11-cis-RoDH) gene encodes the short-chain alcohol dehydrogenase responsible for 11-cis-retinol oxidation in the visual cycle. The structure of the murine 11-cis-RoDH gene was used to reinvestigate its transcription pattern. An 11-cis-RoDH gene transcript was detected in several non-ocular tissues. The question regarding the substrate specificity of the enzyme w...

متن کامل

ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal.

The visual cycle is a series of enzyme-catalyzed reactions which converts all-trans-retinal to 11-cis-retinal for the regeneration of visual pigments in rod and cone photoreceptor cells. Although essential for vision, 11-cis-retinal like all-trans-retinal is highly toxic due to its highly reactive aldehyde group and has to be detoxified by either reduction to retinol or sequestration within ret...

متن کامل

R91W mutation in Rpe65 leads to milder early-onset retinal dystrophy due to the generation of low levels of 11-cis-retinal.

RPE65 is a retinal pigment epithelial protein essential for the regeneration of 11-cis-retinal, the chromophore of cone and rod visual pigments. Mutations in RPE65 lead to a spectrum of retinal dystrophies ranging from Leber's congenital amaurosis to autosomal recessive retinitis pigmentosa. One of the most frequent missense mutations is an amino acid substitution at position 91 (R91W). Affecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Visual neuroscience

دوره 17 5  شماره 

صفحات  -

تاریخ انتشار 2000